

Tetrahedron Letters 43 (2002) 2967–2970

Dimsyl anion in the monoalkylation of solid-phase alkyl sulfones

Wei-Chieh Cheng,^a Chu-Chung Lin^b and Mark J. Kurth^{a,*}

^aDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5295, USA ^bTaigen Biotechnolog 7F, 138 Shin Ming Rd., Neihu Dist., Taipei 114, Taiwan, ROC

Received 12 February 2002; revised 27 February 2002; accepted 28 February 2002

Abstract—Polymer-bound α -sulfonyl monocarbanions can be generated very effectively with dimsyl anion. The highly efficient and convenient protocols presented here report the preparation of α , β -unsaturated ketones and vinylaryl compounds using dimsyl anion to achieve the key solid-phase α -sulfonyl monocarbanion alkylation step. © 2002 Elsevier Science Ltd. All rights reserved.

The solution-phase geminal dialkylation of α, α -sulforyl dicarbanions with various electrophiles has been studied by Kaiser¹ and others.² According to those protocols,^{1,2} the α,α -dilithiosulfone is typically generated by two equivalents of "BuLi in THF and subsequently undergoes smooth geminal dialkylation. In solid-phase organic synthesis (SPOS), excess reagents are often employed to drive reactions to completion; thus, polymer-bound α, α -dilithiosulfones can be readily prepared with excess "BuLi.3 In contrast, given the vagaries of stoichiometry and reaction rates on solid-phase, it is difficult to perform a controlled generation of an α monolithiosulfone on resin using "BuLi (Fig. 1). Moreover, functional groups such as amides and aryl halides are incompatible with the use of "BuLi. Even though the solution-phase preparation of α -sulforyl monocarbanions can be accomplished by the use of stoichiometric "BuLi or LDA,⁴ the efficient solid-phase production of α -monolithiosulfones for use in monoalkylations has not been explored.

As part of an investigation of the feasibility of solidphase sulfone monoalkylation, we set out to prepare α,β -unsaturated ketones⁵ via a four-step process consisting of (i) sulfinate *S*-alkylation; (ii) sulfone monoalkylation with epoxides; (iii) γ -hydroxy sulfone \rightarrow γ -ketosulfone oxidation, and (iv) polymer-bound benzenesulfinate⁶ elimination with release of the desired α,β -unsaturated ketone product from the resin (Fig. 2). While these α,β -unsaturated ketones can be prepared via the Claisen–Schmidt base-catalyzed aldol condensation,⁷ they have not, to our knowledge, been prepared via SPOS using a traceless sulfone linker^{3,7} strategy. Preliminary solution-phase studies were undertaken to survey reaction conditions and establish the modifications required for SPOS. LDA was the first base employed in our trial and, to mimic solid-phase conditions, excess base (2 equiv.) and electrophile (epoxide, 3 equiv.) were employed at various temperatures to perform the epoxide-alkylation reactions (Scheme 1, Table 1).^{8,9} At lower temperature (e.g. -78° C), the reaction proceeds best (78% yield of 4), but the yield was poor at room temperature (18%) and unreacted starting material (3) was recovered (50% recovery; presumably due to LDA decomposition at room temperature in THF). These results led us to select LDA at -78° C for our investigation of solid-phase monoalkylation.

Figure 2. Benzenesulfinate $1 \rightarrow \alpha, \beta$ -unsaturated ketones 2.

^{*} Corresponding author. Tel.: +1-(530)-752-8192; fax: +1-(530)-752-8995; e-mail: mjkurth@ucdavis.edu

^{0040-4039/02/}\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00423-9

Scheme 1. Solution-phase monoalkylation with propylene oxide.

Table 1.

Entry	Base ^a	Temp.	Yield of 4 (%)
1	LDA ^b	Rt	18
2	LDA ^b	-30°C	67
3	LDA ^b	$-78^{\circ}\mathrm{C}$	78
4	Dimsyl ^c	Rt	93

^a Two equivalents of base and three equivalents of propylene oxide were used.

^b LDA = $({}^{i}Pr)_{2}NLi$.

^c Dimsyl = $CH_3S(O)CH_2Li$.

In the event, treatment of sulfone resin **5a** (see Scheme 2; $1\rightarrow 5a$) with LDA (now, 5 equiv.) at -78° C followed by addition of propylene oxide (now, 7 equiv.) gave resin **6a**. Since this transformation exhibited no reliably diagnostic absorption peaks in the single bead FTIR spectrum, we decided to release the target molecule from the solid support via Swern oxidation¹⁰ of **6a** with concomitant linker cleavage by sulfinate elimination following our published protocol.¹¹ The resulting α,β -unsaturated ketone (**7a**) was produced smoothly in 72% overall yield from starting resin **1**.

Although the solid-phase monoalkylation of **5a** using LDA was viable, we realized that the low temperature $(-78^{\circ}C)$ requirement as well as the relative instability of LDA would be inconvenient in combinatorial library production. These considerations led us to investigate

Scheme 2. Loading of 1=0.5 mmol/g. *Reagents and conditions*: (a) 4-bromobenzyl bromide, THF/DMF, 80°C. (b) Base (5 equiv.), THF; propylene oxide (7 equiv.), THF. (c) Swern oxidation.

the use of dimsyl anion¹² [CH₃S(O)CH₂⁻M⁺; DMSO, $pK_a = 35$] in place of LDA [('Pr)₂NH, $pK_a = 36$] for the generation of solid-phase α -sulfonyl monocarbanions.¹³ In solution-phase studies, treatment of **3** with dimsyl anion¹⁴ (2 equiv.) at room temperature followed by addition of propylene oxide gave **4** in 93% yield (Scheme 1). We next extended this encouraging result to solid-phase, now employing dimsyl anion for α -sulfonyl monocarbanion formation—now at room temperature. Following the protocol outlined in Scheme 2,¹⁵ monocarbanion formation and alkylation of **5a** with propylene oxide followed by oxidation of intermediate **6a** led to the α , β -unsaturated ketone via concomitant linker cleavage by sulfinate elimination. Enone **7a** was obtained in 90% overall yield for this three-step process.

To further illustrate the merits of employing dimsyl anion for solid-phase sulfone monoalkylation, polymerbound benzyl phenyl sulfones **5a** ($\mathbf{R} = \mathbf{Br}$) and **5b** ($\mathbf{R} =$ Me) together with propylene and styrene oxides were utilized to build a small library of enones (**7a–d**),¹⁶ as illustrated in Scheme 3. Monocarbanion formation and alkylation delivered resins **6a–d** which, upon Swern

Scheme 3. Loading of 1=0.5 mmol/g. Reagents and conditions: (a) 4-bromobenzyl bromide or 4-methylbenzyl chloride, THF/DMF, 80°C. (b) CH₃S(O)CH₂Li (5 equiv.), THF; propylene or styrene oxide (7 equiv.), THF. (c) Swern oxidation.

oxidation with concomitant sulfinate elimination, delivered α , β -unsaturated ketones **7a-d** in excellent overall yields from starting resin **1** (82–90%).

In addition to sulfone aninon opening of epoxides, we also examined the use of chloromethyltrimethylsilane as our alkylation reagent. We again started in solutionphase by reacting **3** with bases (2 equiv.) followed by addition of chloromethyltrimethylsilane to afford **8** (Scheme 4, Table 2). As hoped, monoalkylation produced **8** in high yield (95%) when dimsyl anion was used as base. In contrast, the conversion was sluggish with LDA as base at -78° C (entries 1 and 2), but improved in the presence of added crown ether (15crown-5; entry 3).¹⁷

Following the solid-phase monoalkylation protocols shown in Schemes 2 and 3, monocarbanions of resins **5a–c** were generated by treatment with dimsyl anion at room temperature. Subsequent monoalkylation by treatment with chloromethyltrimethylsilane generated resins **9a–c**. This transformation exhibited reliably diagnostic absorption peaks in the single bead FTIR spectrum (Si–C bond at 1250 cm⁻¹). To release our target molecules from the resin, we chose a new cleavage strategy that employed the silane moiety at the β posi-

Scheme 4. Solution-phase monoalkylation with propylene oxide.

Table 2.

Entry	Base ^a	Temp./time	Yield of 8 ^b (%)
1	LDA	-78°C/2 h	55
2	LDA	$-78^{\circ}C/5$ h	75
3	LDA ^c	$-78^{\circ}C/3$ h	89
4	Dimsyl	Rt/2 h	95

^a Two equivalents of base and three equivalents of ClCH₂SiMe₃ were used.

^b Isolated yield.

^c With added 15-crown-5 (3 equiv.).

10a; (86%) R = 4-BrC₆H₄ **10b**; (89%) R = 4-CH₃C₆H₄ **10c**; ((80%) R = naphthalen-1-yl

Scheme 5. Solid-phase monoalkylation with ClCH₂SiMe₃.

tion to trigger elimination of polymer-bound benzenesulfinate. Thus, treating resin 9 with floride anion (TBAF)¹⁸ in THF for 6 h delivered the target molecules—vinylaryl compounds 10a-c—in high yields (80–89%; Scheme 5).

In summary, polymer-bound α -sulfonyl monocarbanions can be generated by LDA (-78°C) or dimsyl anion (room temperature) and undergo alkylation with epoxides to generate γ -hydroxy sulfones (6) or chloromethyltrimethylsilane to generate β -silyl sulfones (9). In each case, the more convenient and efficient protocol employs dimsyl anion as base.

Acknowledgements

We thank the National Science Foundation and Cystic Fibrosis Foundation for financial support of this research. C.-C.L. thanks *Taigen Biotechnology* for the opportunity to do a sabbatical study at the University of California, Davis. The 400 and 300 MHz NMR spectrometers used in this study were funded in part by a grant from NSF (CHE-9808183).

References

- (a) Kaiser, E. M.; Petty, J. D.; Knutson, P. L. A. Synthesis 1977, 509; (b) Kaiser, E. M.; Solter, L. E.; Schwarz, R. A.; Beard, R. D.; Hauser, C. R. J. Am. Chem. Soc. 1971, 93, 4237.
- (a) Najdi, S.; Kurth, M. J. *Tetrahedron Lett.* **1990**, *31*, 3279;
 (b) Eisch, J. J.; Dua, S. K.; Behrooz, M. J. Org. Chem. **1985**, *50*, 3674;
 (c) Vollhardt, J.; Gais, H.-J.; Lukas, K. L. Angew. Chem., Int. Ed. Engl. **1985**, *24*, 610.
- (a) Halm, C.; Evarts, J. B.; Kurth, M. J. *Tetrahedron Lett.* **1997**, *38*, 7709; (b) Cheng, W.-C.; Halm, C.; Evarts, J. B.; Olmstead, M. M.; Kurth, M. J. *J. Org. Chem.* **1999**, *64*, 8557; (c) Cheng, W.-C.; Olmstead, M. M.; Kurth, M. J. *J. Org. Chem.* **2001**, *66*, 5528.
- 4. (a) Julia, M.; Blasioli, C. Bull. Soc. Chim. Fr. 1976, 1941;
 (b) Pohmakotr, M.; Pisutjaroenpong, S. Tetrahedron Lett. 1985, 26, 3613; (c) Yamagiwa, Y.; Ohashi, K.; Sakamoto, Y.; Hirakawa, S.; Kamikawa, T.; Kubo, I. Tetrahedron 1987, 43, 3387.
- (a) Powers, D. G.; Casebier, D. S.; Fokas, D.; Ryan, W. J.; Troth, J. R.; Coffen, D. L. *Tetrahedron* 1998, 54, 4085;
 (b) Liu, M.; Wilirat, P.; Go, M.-L. J. Med. Chem. 2001, 44, 4443;
 (c) Lawrence, N. J.; Rennison, D.; McGown, A. T.; Ducki, S.; Gul, L. A.; Hadfield, J. A.; Khan, N. J. Comb. Chem. 2001, 3, 421.
- (a) Farrall, M. J.; Frechet, J. M. J. Org. Chem. 1976, 41, 3877; (b) Fyles, T. M.; Leznoff, C. C. Can. J. Chem. 1976, 54, 935; (c) Fyles, T. M.; Leznoff, C. C. Can. J. Chem. 1978, 56, 1031.
- (a) Kulkarni, B. A.; Ganesan, A. *Tetrahedron Lett.* **1999**, 40, 5633;
 (b) Barco, A.; Benetti, S.; De Risi, C.; Marchetti, P.; Pollini, G. P.; Zanirato, V. *Tetrahedron Lett.* **1998**, *39*, 7591;
 (c) Cheng, W.-C.; Olmstead, M. M.; Kurth, M. J. J. Org. Chem. **2001**, *66*, 5528.

- Similar epoxide opening reactions have been reported by Julia and Uguen with the use of "BuLi (1 equiv., -78°C) as base. See: Julia, M.; Uguen, D. Bull. Soc. Chim. Fr. 1976, 513.
- Attempts to separate the diastereomeric mixture of 4 are not feasible with flash column chromatography. Oxidation (Jones' reagent) of 4 delivers 4-benzenesulfonyl-4-(*p*tolyl)butan-2-one in quantitative yield: IR (neat) 1718, 1314, 1145 cm⁻¹; ¹H NMR δ 2.13 (s, 3H), 2.27 (s, 3H), 3.24 (dd, 1H, *J*=18, 9 Hz), 3.56 (dd, 1H, *J*=18, 4.2 Hz), 4.69 (dd, 1H, *J*=9, 4.2 Hz), 6.95–7.54 (m, 9H); ¹³C NMR δ 203.0, 138.6, 136.6, 133.5, 129.3, 129.0, 128.8, 128.5, 65.7, 41.4, 30.5, 21.1.
- (a) Mancuso, A.; Huang, S. L.; Swern, D. J. Org. Chem. 1978, 43, 2480; (b) Smith, A. B., III; Liu, H.; Okumura, H.; Favor, D. A.; Hirschmann, R. Org. Lett. 2000, 2, 2041.
- Cheng, W.-C.; Wong, M.; Olmstead, M. M.; Kurth, M. J. Org. Lett. 2002, 4, 741.
- 12. Nair, S. K.; Samuel, R.; Asokan, C. V. Synthesis 2001, 573.
- 13. Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456.
- 14. Dimsyl anion was prepared by addition of "BuLi to DMSO (1/2 molar ratio) in THF at 0°C.
- 15. Typical procedure for the transformation (**5a→6a**) with dimsyl anion as base: "BuLi (5 equiv., 1.2 mL, 1.6 M) was

added to DMSO (10 equiv., 0.3 g) in THF (10 mL) at 0°C and stirred for 5 min. The resulting dimsyl anion solution was transferred to a suspension of polymer **5a** (0.8 g, 0.38 mmol) in THF (6 mL) at room temperature; the resin color changed from pale yellow to yellow. After 30 min, propylene oxide (7 equiv., 0.16 g) was added to this mixture; the color turned light orange. The reaction was quenched with 10% HCl (aq.) after 1 h and the resin was filtrated, washed, and dried to afford resin **6a** as pale yellow beads: IR (single bead reflectance) 1600, 1492, 1452, 1310, 1138 cm⁻¹.

- Enones 7a-d are known compounds. See: (a) El-Sadany, S. K.; Sharaf, S. M.; Darwish, A. I.; Youssef, A. A. *Indian J. Chem.* 1991, 30b, 567; (b) Lowe, J. U., Jr.; Ferguson, L. N. J. Org. Chem. 1965, 30, 3000.
- 17. (a) Eyring, E. M.; Cobranchi, D. P.; Garland, B. A.; Gerhard, A.; Highley, A. M.; Huang, Y. H.; Konya, G.; Petrucci, S.; Vaneldik, R. *Pure Appl. Chem.* 1993, 65, 451; (b) Munoz, S.; Echegoyen, L. J. Chem. Soc., Perkin Trans. 2 1991, 1735.
- For application in solution-phase reactions, see: (a) Brieaddy, L. E.; Liang, F.; Abraham, P.; Lee, J. R.; Carroll, F. I. *Tetrahedron Lett.* **1998**, *39*, 5321; (b) Meagher, T. P.; Shechter, H. J. Org. Chem. **1998**, *63*, 4193; (c) Kim, S. H.; Jin, Z.; Ma, S.; Fuchs, P. L. *Tetrahedron Lett.* **1995**, *36*, 4013.